History
This section may be too long and excessively detailed.November 2018) ( |
1970s and earlieredit
In 1972 Friedmann and Roblin authored a paper in Science titled "Gene therapy for human genetic disease?" Rogers (1970) was cited for proposing that exogenous good DNA be used to replace the defective DNA in those who suffer from genetic defects.
1980sedit
In 1984 a retrovirus vector system was designed that could efficiently insert foreign genes into mammalian chromosomes.
1990sedit
The first approved gene therapy clinical research in the US took place on 14 September 1990, at the National Institutes of Health (NIH), under the direction of William French Anderson. Four-year-old Ashanti DeSilva received treatment for a genetic defect that left her with ADA-SCID, a severe immune system deficiency. The defective gene of the patient's blood cells was replaced by the functional variant. Ashanti's immune system was partially restored by the therapy. Production of the missing enzyme was temporarily stimulated, but the new cells with functional genes were not generated. She led a normal life only with the regular injections performed every two months. The effects were successful, but temporary.
Cancer gene therapy was introduced in 1992/93 (Trojan et al. 1993). The treatment of glioblastoma multiforme, the malignant brain tumor whose outcome is always fatal, was done using a vector expressing antisense IGF-I RNA (clinical trial approved by NIH protocol no.1602 24 November 1993, and by the FDA in 1994). This therapy also represents the beginning of cancer immunogene therapy, a treatment which proves to be effective due to the anti-tumor mechanism of IGF-I antisense, which is related to strong immune and apoptotic phenomena.
In 1992 Claudio Bordignon, working at the Vita-Salute San Raffaele University, performed the first gene therapy procedure using hematopoietic stem cells as vectors to deliver genes intended to correct hereditary diseases. In 2002 this work led to the publication of the first successful gene therapy treatment for adenosine deaminase deficiency (ADA-SCID). The success of a multi-center trial for treating children with SCID (severe combined immune deficiency or "bubble boy" disease) from 2000 and 2002, was questioned when two of the ten children treated at the trial's Paris center developed a leukemia-like condition. Clinical trials were halted temporarily in 2002, but resumed after regulatory review of the protocol in the US, the United Kingdom, France, Italy, and Germany.
In 1993 Andrew Gobea was born with SCID following prenatal genetic screening. Blood was removed from his mother's placenta and umbilical cord immediately after birth, to acquire stem cells. The allele that codes for adenosine deaminase (ADA) was obtained and inserted into a retrovirus. Retroviruses and stem cells were mixed, after which the viruses inserted the gene into the stem cell chromosomes. Stem cells containing the working ADA gene were injected into Andrew's blood. Injections of the ADA enzyme were also given weekly. For four years T cells (white blood cells), produced by stem cells, made ADA enzymes using the ADA gene. After four years more treatment was needed.
Jesse Gelsinger's death in 1999 impeded gene therapy research in the US. As a result, the FDA suspended several clinical trials pending the reevaluation of ethical and procedural practices.
2000sedit
The modified cancer gene therapy strategy of antisense IGF-I RNA (NIH n˚ 1602) using antisense / triple helix anti-IGF-I approach was registered in 2002 by Wiley gene therapy clinical trial - n˚ 635 and 636. The approach has shown promising results in the treatment of six different malignant tumors: glioblastoma, cancers of liver, colon, prostate, uterus, and ovary (Collaborative NATO Science Programme on Gene Therapy USA, France, Poland n˚ LST 980517 conducted by J. Trojan) (Trojan et al., 2012). This anti-gene antisense/triple helix therapy has proven to be efficient, due to the mechanism stopping simultaneously IGF-I expression on translation and transcription levels, strengthening anti-tumor immune and apoptotic phenomena.
2002edit
Sickle-cell disease can be treated in mice. The mice – which have essentially the same defect that causes human cases – used a viral vector to induce production of fetal hemoglobin (HbF), which normally ceases to be produced shortly after birth. In humans, the use of hydroxyurea to stimulate the production of HbF temporarily alleviates sickle cell symptoms. The researchers demonstrated this treatment to be a more permanent means to increase therapeutic HbF production.
A new gene therapy approach repaired errors in messenger RNA derived from defective genes. This technique has the potential to treat thalassaemia, cystic fibrosis and some cancers.
Researchers created liposomes 25 nanometers across that can carry therapeutic DNA through pores in the nuclear membrane.
2003edit
In 2003 a research team inserted genes into the brain for the first time. They used liposomes coated in a polymer called polyethylene glycol, which unlike viral vectors, are small enough to cross the blood–brain barrier.
Short pieces of double-stranded RNA (short, interfering RNAs or siRNAs) are used by cells to degrade RNA of a particular sequence. If a siRNA is designed to match the RNA copied from a faulty gene, then the abnormal protein product of that gene will not be produced.
Gendicine is a cancer gene therapy that delivers the tumor suppressor gene p53 using an engineered adenovirus. In 2003, it was approved in China for the treatment of head and neck squamous cell carcinoma.
2006edit
In March researchers announced the successful use of gene therapy to treat two adult patients for X-linked chronic granulomatous disease, a disease which affects myeloid cells and damages the immune system. The study is the first to show that gene therapy can treat the myeloid system.
In May a team reported a way to prevent the immune system from rejecting a newly delivered gene. Similar to organ transplantation, gene therapy has been plagued by this problem. The immune system normally recognizes the new gene as foreign and rejects the cells carrying it. The research utilized a newly uncovered network of genes regulated by molecules known as microRNAs. This natural function selectively obscured their therapeutic gene in immune system cells and protected it from discovery. Mice infected with the gene containing an immune-cell microRNA target sequence did not reject the gene.
In August scientists successfully treated metastatic melanoma in two patients using killer T cells genetically retargeted to attack the cancer cells.
In November researchers reported on the use of VRX496, a gene-based immunotherapy for the treatment of HIV that uses a lentiviral vector to deliver an antisense gene against the HIV envelope. In a phase I clinical trial, five subjects with chronic HIV infection who had failed to respond to at least two antiretroviral regimens were treated. A single intravenous infusion of autologous CD4 T cells genetically modified with VRX496 was well tolerated. All patients had stable or decreased viral load; four of the five patients had stable or increased CD4 T cell counts. All five patients had stable or increased immune response to HIV antigens and other pathogens. This was the first evaluation of a lentiviral vector administered in a US human clinical trial.
2007edit
In May researchers announced the first gene therapy trial for inherited retinal disease. The first operation was carried out on a 23-year-old British male, Robert Johnson, in early 2007.
2008edit
Leber's congenital amaurosis is an inherited blinding disease caused by mutations in the RPE65 gene. The results of a small clinical trial in children were published in April. Delivery of recombinant adeno-associated virus (AAV) carrying RPE65 yielded positive results. In May two more groups reported positive results in independent clinical trials using gene therapy to treat the condition. In all three clinical trials, patients recovered functional vision without apparent side-effects.
2009edit
In September researchers were able to give trichromatic vision to squirrel monkeys. In November 2009, researchers halted a fatal genetic disorder called adrenoleukodystrophy in two children using a lentivirus vector to deliver a functioning version of ABCD1, the gene that is mutated in the disorder.
2010sedit
2010edit
An April paper reported that gene therapy addressed achromatopsia (color blindness) in dogs by targeting cone photoreceptors. Cone function and day vision were restored for at least 33 months in two young specimens. The therapy was less efficient for older dogs.
In September it was announced that an 18-year-old male patient in France with beta-thalassemia major had been successfully treated. Beta-thalassemia major is an inherited blood disease in which beta haemoglobin is missing and patients are dependent on regular lifelong blood transfusions. The technique used a lentiviral vector to transduce the human ß-globin gene into purified blood and marrow cells obtained from the patient in June 2007. The patient's haemoglobin levels were stable at 9 to 10 g/dL. About a third of the hemoglobin contained the form introduced by the viral vector and blood transfusions were not needed. Further clinical trials were planned. Bone marrow transplants are the only cure for thalassemia, but 75% of patients do not find a matching donor.
Cancer immunogene therapy using modified antigene, antisense/triple helix approach was introduced in South America in 2010/11 in La Sabana University, Bogota (Ethical Committee 14 December 2010, no P-004-10). Considering the ethical aspect of gene diagnostic and gene therapy targeting IGF-I, the IGF-I expressing tumors i.e. lung and epidermis cancers were treated (Trojan et al. 2016).
2011edit
In 2007 and 2008, a man (Timothy Ray Brown) was cured of HIV by repeated hematopoietic stem cell transplantation (see also allogeneic stem cell transplantation, allogeneic bone marrow transplantation, allotransplantation) with double-delta-32 mutation which disables the CCR5 receptor. This cure was accepted by the medical community in 2011. It required complete ablation of existing bone marrow, which is very debilitating.
In August two of three subjects of a pilot study were confirmed to have been cured from chronic lymphocytic leukemia (CLL). The therapy used genetically modified T cells to attack cells that expressed the CD19 protein to fight the disease. In 2013, the researchers announced that 26 of 59 patients had achieved complete remission and the original patient had remained tumor-free.
Human HGF plasmid DNA therapy of cardiomyocytes is being examined as a potential treatment for coronary artery disease as well as treatment for the damage that occurs to the heart after myocardial infarction.
In 2011 Neovasculgen was registered in Russia as the first-in-class gene-therapy drug for treatment of peripheral artery disease, including critical limb ischemia; it delivers the gene encoding for VEGF. Neovasculogen is a plasmid encoding the CMV promoter and the 165 amino acid form of VEGF.
2012edit
The FDA approved Phase 1 clinical trials on thalassemia major patients in the US for 10 participants in July. The study was expected to continue until 2015.
In July 2012, the European Medicines Agency recommended approval of a gene therapy treatment for the first time in either Europe or the United States. The treatment used Alipogene tiparvovec (Glybera) to compensate for lipoprotein lipase deficiency, which can cause severe pancreatitis. The recommendation was endorsed by the European Commission in November 2012 and commercial rollout began in late 2014. Alipogene tiparvovec was expected to cost around $1.6 million per treatment in 2012, revised to $1 million in 2015, making it the most expensive medicine in the world at the time. As of 2016update, only the patients treated in clinical trials and a patient who paid the full price for treatment have received the drug.
In December 2012, it was reported that 10 of 13 patients with multiple myeloma were in remission "or very close to it" three months after being injected with a treatment involving genetically engineered T cells to target proteins NY-ESO-1 and LAGE-1, which exist only on cancerous myeloma cells.
2013edit
In March researchers reported that three of five adult subjects who had acute lymphocytic leukemia (ALL) had been in remission for five months to two years after being treated with genetically modified T cells which attacked cells with CD19 genes on their surface, i.e. all B-cells, cancerous or not. The researchers believed that the patients' immune systems would make normal T-cells and B-cells after a couple of months. They were also given bone marrow. One patient relapsed and died and one died of a blood clot unrelated to the disease.
Following encouraging Phase 1 trials, in April, researchers announced they were starting Phase 2 clinical trials (called CUPID2 and SERCA-LVAD) on 250 patients at several hospitals to combat heart disease. The therapy was designed to increase the levels of SERCA2, a protein in heart muscles, improving muscle function. The FDA granted this a Breakthrough Therapy Designation to accelerate the trial and approval process. In 2016 it was reported that no improvement was found from the CUPID 2 trial.
In July researchers reported promising results for six children with two severe hereditary diseases had been treated with a partially deactivated lentivirus to replace a faulty gene and after 7–32 months. Three of the children had metachromatic leukodystrophy, which causes children to lose cognitive and motor skills. The other children had Wiskott–Aldrich syndrome, which leaves them to open to infection, autoimmune diseases, and cancer. Follow up trials with gene therapy on another six children with Wiskott–Aldrich syndrome were also reported as promising.
In October researchers reported that two children born with adenosine deaminase severe combined immunodeficiency disease (ADA-SCID) had been treated with genetically engineered stem cells 18 months previously and that their immune systems were showing signs of full recovery. Another three children were making progress. In 2014 a further 18 children with ADA-SCID were cured by gene therapy. ADA-SCID children have no functioning immune system and are sometimes known as "bubble children."
Also in October researchers reported that they had treated six hemophilia sufferers in early 2011 using an adeno-associated virus. Over two years later all six were producing clotting factor.
2014edit
In January researchers reported that six choroideremia patients had been treated with adeno-associated virus with a copy of REP1. Over a six-month to two-year period all had improved their sight. By 2016, 32 patients had been treated with positive results and researchers were hopeful the treatment would be long-lasting. Choroideremia is an inherited genetic eye disease with no approved treatment, leading to loss of sight.
In March researchers reported that 12 HIV patients had been treated since 2009 in a trial with a genetically engineered virus with a rare mutation (CCR5 deficiency) known to protect against HIV with promising results.
Clinical trials of gene therapy for sickle cell disease were started in 2014.
In February LentiGlobin BB305, a gene therapy treatment undergoing clinical trials for treatment of beta thalassemia gained FDA "breakthrough" status after several patients were able to forgo the frequent blood transfusions usually required to treat the disease.
In March researchers delivered a recombinant gene encoding a broadly neutralizing antibody into monkeys infected with simian HIV; the monkeys' cells produced the antibody, which cleared them of HIV. The technique is named immunoprophylaxis by gene transfer (IGT). Animal tests for antibodies to ebola, malaria, influenza, and hepatitis were underway.
In March, scientists, including an inventor of CRISPR, Jennifer Doudna, urged a worldwide moratorium on germline gene therapy, writing "scientists should avoid even attempting, in lax jurisdictions, germline genome modification for clinical application in humans" until the full implications "are discussed among scientific and governmental organizations".
In October, researchers announced that they had treated a baby girl, Layla Richards, with an experimental treatment using donor T-cells genetically engineered using TALEN to attack cancer cells. One year after the treatment she was still free of her cancer (a highly aggressive form of acute lymphoblastic leukaemia ALL). Children with highly aggressive ALL normally have a very poor prognosis and Layla's disease had been regarded as terminal before the treatment.
In December, scientists of major world academies called for a moratorium on inheritable human genome edits, including those related to CRISPR-Cas9 technologies but that basic research including embryo gene editing should continue.
2016edit
In April the Committee for Medicinal Products for Human Use of the European Medicines Agency endorsed a gene therapy treatment called Strimvelis and the European Commission approved it in June. This treats children born with adenosine deaminase deficiency and who have no functioning immune system. This was the second gene therapy treatment to be approved in Europe.
In October, Chinese scientists reported they had started a trial to genetically modify T-cells from 10 adult patients with lung cancer and reinject the modified T-cells back into their bodies to attack the cancer cells. The T-cells had the PD-1 protein (which stops or slows the immune response) removed using CRISPR-Cas9.
A 2016 Cochrane systematic review looking at data from four trials on topical cystic fibrosis transmembrane conductance regulator (CFTR) gene therapy does not support its clinical use as a mist inhaled into the lungs to treat cystic fibrosis patients with lung infections. One of the four trials did find weak evidence that liposome-based CFTR gene transfer therapy may lead to a small respiratory improvement for people with CF. This weak evidence is not enough to make a clinical recommendation for routine CFTR gene therapy.
2017edit
In February Kite Pharma announced results from a clinical trial of CAR-T cells in around a hundred people with advanced Non-Hodgkin lymphoma.
In March, French scientists reported on clinical research of gene therapy to treat sickle-cell disease.
In August, the FDA approved tisagenlecleucel for acute lymphoblastic leukemia. Tisagenlecleucel is an adoptive cell transfer therapy for B-cell acute lymphoblastic leukemia; T cells from a person with cancer are removed, genetically engineered to make a specific T-cell receptor (a chimeric T cell receptor, or "CAR-T") that reacts to the cancer, and are administered back to the person. The T cells are engineered to target a protein called CD19 that is common on B cells. This is the first form of gene therapy to be approved in the United States. In October, a similar therapy called axicabtagene ciloleucel was approved for non-Hodgkin lymphoma.
In October, biophysicist and biohacker Josiah Zayner claimed to have performed the very first in-vivo human genome editing in the form of a self-administered therapy.
On November 13th, medical scientists working with Sangamo Therapeutics, headquartered in Richmond, California, announced the first ever in-body human gene editing therapy. The treatment, designed to permanently insert a healthy version of the flawed gene that causes Hunter syndrome, was given to 44-year-old Brian Madeux and is part of the world's first study to permanently edit DNA inside the human body. The success of the gene insertion was later confirmed. Clinical trials by Sangamo involving gene editing using Zinc Finger Nuclease (ZFN) are ongoing.
In December the results of using an adeno-associated virus with blood clotting factor VIII to treat nine haemophilia A patients were published. Six of the seven patients on the high dose regime increased the level of the blood clotting VIII to normal levels. The low and medium dose regimes had no effect on the patient's blood clotting levels.
In December, the FDA approved Luxturna, the first in vivo gene therapy, for the treatment of blindness due to Leber's congenital amaurosis. The price of this treatment was 850,000 US dollars for both eyes.
2018edit
In a November review article on gene therapy for sickle cell disease, a need was identified for high quality randomised controlled trials assessing the risks and benefits involved.
2019edit
In May, the FDA approved onasemnogene abeparvovec (Zolgensma) for treating spinal muscular atrophy in children under two years of age. The list price of Zolgensma was set at US$2.125 million per dose, making it the most expensive drug ever.
In May, the EMA approved betibeglogene autotemcel (Zynteglo) for treating beta thalassemia for people twelve years of age and older.
In July, Allergan and Editas Medicine announced phase 1/2 clinical trial of AGN-151587 for the treatment of Leber congenital amaurosis 10. This is the first study of a CRISPR-based in vivo human gene editing therapy, where the editing takes place inside the human body. The first injection of the CRISPR-Cas System was confirmed in March 2020.
2020sedit
2020edit
In May, onasemnogene abeparvovec (Zolgensma) was approved by the European Union for the treatment of spinal muscular atrophy in patients who either have clinical symptoms of SMA type 1 or who have 2 or 3 copies of the SMN2 gene, irrespective of body weight or age.
In August, Audentes Therapeutics reported that three out of 17 children with X-linked myotubular myopathy participating the clinical trial of a AAV8-based gene therapy treatment AT132 have died. It was suggested that the treatment, whose dosage is based on body weight, exerts a disproportionately toxic effect on heavier patients, since the three patients who died were heavier than the others. The trial has been put on clinical hold.
On 15 October, the Committee for Medicinal Products for Human Use (CHMP) of the European Medicines Agency (EMA) adopted a positive opinion, recommending the granting of a marketing authorisation for the medicinal product Libmeldy (autologous CD34+ cell enriched population that contains hematopoietic stem and progenitor cells transduced ex vivo using a lentiviral vector encoding the human arylsulfatase A gene), a gene therapy for the treatment of children with the "late infantile" (LI) or "early juvenile" (EJ) forms of metachromatic leukodystrophy (MLD). The active substance of Libmeldy consists of the child's own stem cells which have been modified to contain working copies of the ARSA gene. When the modified cells are injected back into the patient as a one-time infusion, the cells are expected to start producing the ARSA enzyme that breaks down the build-up of sulfatides in the nerve cells and other cells of the patient's body.
Also on 15 October, Lysogene, a French biotechnological company, reported the death of a patient in who has received LYS-SAF302, an experimental gene therapy treatment for mucopolysaccharidosis type IIIA (Sanfilippo syndrome type A).
Comments
Post a Comment