Speculative uses




Speculated uses for gene therapy include:

Gene dopingedit

Athletes might adopt gene therapy technologies to improve their performance. Gene doping is not known to occur, but multiple gene therapies may have such effects. Kayser et al. argue that gene doping could level the playing field if all athletes receive equal access. Critics claim that any therapeutic intervention for non-therapeutic/enhancement purposes compromises the ethical foundations of medicine and sports.

Human genetic engineeringedit

Genetic engineering could be used to cure diseases, but also to change physical appearance, metabolism, and even improve physical capabilities and mental faculties such as memory and intelligence. Ethical claims about germline engineering include beliefs that every fetus has a right to remain genetically unmodified, that parents hold the right to genetically modify their offspring, and that every child has the right to be born free of preventable diseases. For parents, genetic engineering could be seen as another child enhancement technique to add to diet, exercise, education, training, cosmetics, and plastic surgery. Another theorist claims that moral concerns limit but do not prohibit germline engineering.

A recent issue of the journal Bioethics was devoted to moral issues surrounding germline genetic engineering in people.

Possible regulatory schemes include a complete ban, provision to everyone, or professional self-regulation. The American Medical Association’s Council on Ethical and Judicial Affairs stated that "genetic interventions to enhance traits should be considered permissible only in severely restricted situations: (1) clear and meaningful benefits to the fetus or child; (2) no trade-off with other characteristics or traits; and (3) equal access to the genetic technology, irrespective of income or other socioeconomic characteristics."

As early in the history of biotechnology as 1990, there have been scientists opposed to attempts to modify the human germline using these new tools, and such concerns have continued as technology progressed. With the advent of new techniques like CRISPR, in March 2015 a group of scientists urged a worldwide moratorium on clinical use of gene editing technologies to edit the human genome in a way that can be inherited. In April 2015, researchers sparked controversy when they reported results of basic research to edit the DNA of non-viable human embryos using CRISPR. A committee of the American National Academy of Sciences and National Academy of Medicine gave qualified support to human genome editing in 2017 once answers have been found to safety and efficiency problems "but only for serious conditions under stringent oversight."

Comments

Popular posts from this blog

Popular culture

Cell types

Hurdles